Oplev unik indsigt ved hjælp af LuckyTemplates TOPN-funktion
Denne blog indeholder LuckyTemplates TOPN DAX-funktionen, som giver dig mulighed for at få unik indsigt fra dine data, hvilket hjælper dig med at træffe bedre markedsføringsbeslutninger.
Oprettelse af visualiseringer i R ved hjælp af ggplot2 kan være en effektiv måde at udforske og forstå dine data på. En almindelig type visualisering er det bivariate plot, som giver dig mulighed for at undersøge sammenhængen mellem to variable.
I denne tutorial lærer du, hvordan du producerer bivariate visualiseringer i R ved hjælp af ggplot2. Denne blog vil specifikt fokusere på, at det ville være svært at udføre i LuckyTemplates, men nemt at gøre i R.
Indholdsfortegnelse
Oversigt
Tre hovedemner vil blive diskuteret i denne øvelse. Du lærer, hvordan du visualiserer fordelingen af en variabel efter gruppe, og hvordan du visualiserer korrelationer og parvise sammenhænge.
Et parvist forhold refererer til forholdet mellem hvert par af variabler i et givet datasæt.
Til denne tutorial skal du downloade ggplot2 -pakken. Når du er færdig, åbner du et tomt script og bringer to biblioteker ind: tidyverse og GGally .
GGally er en udvidelse til ggplot2. Det er bygget til at reducere kompleksiteten ved at kombinere geometriske objekter med transformerede data.
De forskellige bivariate visualiseringer i R
En bivariat visualisering viser sammenhængen mellem to variable.
Lad os som eksempel skabe en visualisering, der viser forholdet mellem byen og motorvejen. Du skal bruge funktionen ggplot ( ) og derefter tildele de relevante data.
Funktionen geom_point ( ) bruges derefter til at generere .
Visualiseringer i R viser korrelation
Funktionen ggcorr () bruges til at visualisere korrelationen mellem variabler. Dette vil generere et varmekort med de laveste til højeste korrelationsværdier vist. Du kan yderligere forbedre visualiseringen ved at tilføje et argument, der viser etiketterne.
Visualiseringer i R, der viser et parvist forhold
Til det parvise plot skal du bruge funktionen ggpairs ( ) .
Da datarammen i dette eksempel indeholder et stort datasæt, skal det først filtreres til kun at vise numeriske værdier, ellers vil resultaterne vise en fejl.
For at filtrere data skal du bruge røroperatoren og funktionen select_if ( ) .
På fanebladet Plot kan du se den parvise visualisering genereret af koden. Du kan også se grafen og korrelationsværdien mellem hver variabel.
En anden ting, du kan gøre med parvise plots, er at tilføje ekstra elementer for at øge visualiseringen. Du kan tilføje en anden variabel og ændre farven på dataene.
I dette tilfælde føjes drevkolonnen til koden, og den æstetiske kortlægningsfunktion bruges til at ændre dens farve.
Når du kører koden, vil du se, at plottet viser scatterplot og korrelationsværdierne efter drev. Diagonalen viser også afhængigt af hvert drev.
Konklusion
Hvis du vil skabe robuste og statistisk understøttede visualiseringer såsom histogrammer, scatterplot og boxplot, anbefales det at bruge ggplot2 med GGally.
R-programmeringssproget sammen med forskellige visualiseringspakker som ggplot2 giver brugerne mulighed for at bygge visualiseringer, der viser sammenhængen og sammenhængen mellem variabler.
GGally udvider ggplot2 ved at udvide flere funktioner, der reducerer kompleksiteten. Hvis du prøver at skabe bivariate og multivariate visualiseringer i LuckyTemplates, vil de vise sig at være en udfordring. Inden for programmeringssproget R behøver du dog kun at skrive en enkelt kodelinje for at nå frem til det statistiske plot, du har brug for.
Alt det bedste,
George Mount
Denne blog indeholder LuckyTemplates TOPN DAX-funktionen, som giver dig mulighed for at få unik indsigt fra dine data, hvilket hjælper dig med at træffe bedre markedsføringsbeslutninger.
Find ud af, hvorfor det er vigtigt at have en dedikeret datotabel i LuckyTemplates, og lær den hurtigste og mest effektive måde at gøre det på.
Denne korte vejledning fremhæver LuckyTemplates mobilrapporteringsfunktion. Jeg vil vise dig, hvordan du kan udvikle rapporter effektivt til mobilenheder.
I denne LuckyTemplates Showcase gennemgår vi rapporter, der viser professionel serviceanalyse fra et firma, der har flere kontrakter og kundeengagementer.
Gå gennem de vigtigste opdateringer til Power Apps og Power Automate og deres fordele og implikationer for Microsoft Power Platform.
Opdag nogle almindelige SQL-funktioner, som vi kan bruge, såsom streng, dato og nogle avancerede funktioner til at behandle eller manipulere data.
I denne tutorial lærer du, hvordan du opretter din perfekte LuckyTemplates-skabelon, der er konfigureret til dine behov og præferencer.
I denne blog vil vi demonstrere, hvordan man lagdelte feltparametre med små multipler for at skabe utrolig nyttig indsigt og visuals.
I denne blog vil du lære, hvordan du bruger LuckyTemplates rangerings- og brugerdefinerede grupperingsfunktioner til at segmentere et eksempeldata og rangordne det efter kriterier.
I denne tutorial vil jeg dække en specifik teknik omkring, hvordan du kun viser Kumulativ Total op til en bestemt dato i dine visuals i LuckyTemplates.