Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Ez az oktatóanyag az adatgyorsítótárak megvalósítását tárgyalja a DAX Studio alkalmazásban. Ez a bejegyzés megmutatja, hogyan befolyásolja ez a számítást, miközben eredményeket generál a lekérdezéssel. Megtudhatja, melyik megvalósítás a jobb a DAX teljesítményének maximalizálása érdekében.

A materializációnak két elképzelése van: a korai materializáció és a késői materializáció .

Tartalomjegyzék

Korai materializáció

Korai materializációról akkor beszélünk, amikor a materializált sorok száma nagyobb, mint a kimenethez szükséges sorok száma.

Ha a kimenet egy naptári év szerinti táblázat, és öt évnyi adattal rendelkezik, akkor felesleges sok materializált sort bevinni. A legjobb gyakorlat az, ha a materializált sorok száma megegyezik a szükséges sorok számával. Ez azonban nem mindig van így, mert ez a feladat összetettségétől függés adatbeállítás.

Mindig ne feledje, hogy az adatok oszlopokból állnak. Tehát amikor a képletmotornak egy táblázaton kell működnie, az oszlopok visszakerülnek egy táblázatformátumba, ami a materializáció. A korai materializációs ötletben a tárolómotor adatgyorsítótárat küld a képletmotornak. A képletmotor ezután ezen a gyorsítótáron dolgozik, és összetett folyamatokat hajt végre.

A korai megvalósulást az összetett illesztések vagy a sok a sokhoz kapcsolat okozhatja az adatmodellekben. Az összetett szűrők vagy iterátorok is okozhatják.

Nem baj, ha összetett intézkedések vannak; csak helyesen kell beállítania őket, hogy a lehető legjobban kihasználja a tárolómotort.

Késői materializáció

Késői materializációról van szó, amikor a materializált sorok száma megegyezik a kimenethez szükséges sorok számával, vagy ahhoz közel van.

A tárolómotor szinte minden munkát elvégz, nem hagy semmit a formulamotornak. Ez felgyorsítja az egész számítást.

Ezek a korai és késői materializációra vonatkozó példalekérdezések:

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Mielőtt futtatná ezeket a lekérdezéseket, ürítse ki a gyorsítótárat. Ezáltal a lekérdezések a hideg gyorsítótár ellen futnak. Ha a DAX-ot a gyorsítótár törlése nélkül futtatja, a következő eredményt kapja:

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

A teljes végrehajtási idő mindössze 1861 ezredmásodperc, mert már használt gyorsítótárat. Ezért mindig törölje a gyorsítótárat a lekérdezések futtatása előtt.

Ha futtatja a korai materializációs lekérdezést, láthatja, hogy a teljes időtartam 9485 ezredmásodperc. Egy adatgyorsítótárat és egysoros kimenetet hozott létre, de 25 millió sort adott vissza.

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Nem kell 25 millió sort megvalósítania az egysoros eredmény eléréséhez, mert ez időt vesz igénybe, és lelassítja a DAX teljesítményét.

Ha futtatja a Késői megvalósulás lekérdezést, láthatja, hogy a teljes számítás csak 1340 ezredmásodpercet vett igénybe. Ezenkívül 2 adatgyorsítótárat generált, amelyek mindegyike 5003 sort ad vissza.

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Ha megnézi a Fizikai lekérdezési tervet, 5000 sort láthat. Nincs egyenlő számú soruk. A Kiszolgálóidőzítések eredménye néha kissé eltér a lekérdezési tervben szereplő sorok pontos számától.

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Így attól kezdve, hogy egyetlen 25 millió soros adatgyorsítótáron dolgozik, két adatgyorsítótárral rendelkezik 5003 sorral. Ez az oka annak, hogy a későbbi materializációval való munka gyorsabb eredményeket ér el, mint a korai materializáció.

Az egyes materializációs lekérdezéseken belül

Ha csak ránézünk a lekérdezésre, máris láthatjuk, hogy a későbbi materializáció gyorsabb. Az Early Materialization lekérdezés egy összesített táblázat sorait számolja meg.

Materializációs ötletek adatgyorsítótárak számára a DAX Studio-ban

Az összefoglalt és megvalósult táblázat nagyobb, mint aaz asztalon , amit a Késői materializáció lekérdezés csinál.

Ha a lekérdezés lassú, kezdje azzal, hogy megnézi, hány sort von be a lekérdezés, és hányra van szükség a kimenethez. A logikai lekérdezési tervet is megnyithatja, és követheti a számításon belüli munkafolyamatot.




Következtetés

A materializáció akkor következik be, amikor a lekérdezések oszlopokat vagy sorokat vonnak ki az adatmodellből. Ez a folyamat természetesen történik, amikor a motor adatokat kap az adatmodellből, hogy eredményeket biztosítson a lekérdezéshez.

Problémák léphetnek fel azonban, ha a DAX túl sok sort húz, mint amennyi az eredményhez szükséges. Ez a probléma úgy oldható meg, hogy leegyszerűsíti a DAX-ot meghatározott folyamatok végrehajtására.

Leave a Comment

E-mail melléklet mentése SharePointba a Power Automate segítségével

E-mail melléklet mentése SharePointba a Power Automate segítségével

Ebből a blogból megtudhatja, hogyan mentheti automatikusan az e-mail mellékleteket a SharePointba, majd törölheti az e-maileket a Power Automate segítségével.

A Microsoft LuckyTemplates irányítópult 18 legjobb példája 2023

A Microsoft LuckyTemplates irányítópult 18 legjobb példája 2023

A Microsoft LuckyTemplates irányítópult 18 legjobb példája 2023

A Power Automate folyamatok létrehozása a semmiből

A Power Automate folyamatok létrehozása a semmiből

Ismerje meg, hogyan hozhat létre <strong>Power Automate</strong> folyamatokat a semmiből. Sablon használata helyett mi magunk hozzuk létre a kiváltó okokat és a műveleteket.

4 módszer a Pi használatára a Pythonban példákkal

4 módszer a Pi használatára a Pythonban példákkal

4 módszer a Pi használatára a Pythonban példákkal

Profit and Loss (P&L) kimutatások létrehozása a LuckyTemplates alkalmazásban

Profit and Loss (P&L) kimutatások létrehozása a LuckyTemplates alkalmazásban

Ebben az útmutatóban bemutatom, hogyan lehet Pénzügyi információk mátrixát létrehozni a Profit és veszteség (P&L) kimutatással a LuckyTemplates alkalmazásban.

Hogyan lehet dinamikusan egyesíteni az oszlopokat egy Power Query-táblázatban

Hogyan lehet dinamikusan egyesíteni az oszlopokat egy Power Query-táblázatban

Fedezze fel, hogyan lehet dinamikusan egyesíteni oszlopokat a Power Query Table.CombineColumns függvény segítségével.

SharePoint-fájlok hozzáadása a számítógéphez

SharePoint-fájlok hozzáadása a számítógéphez

Ismerje meg, hogyan adhatjuk hozzá és szinkronizálhatjuk SharePoint-fájljainkat az asztalon és a OneDrive-on.

Dátumtáblázat létrehozása a LuckyTemplates alkalmazásban

Dátumtáblázat létrehozása a LuckyTemplates alkalmazásban

Tudja meg, miért fontos egy dedikált dátumtáblázat a LuckyTemplatesben, és ismerje meg ennek leggyorsabb és leghatékonyabb módját.

LuckyTemplates mobil jelentéskészítési tippek és technikák

LuckyTemplates mobil jelentéskészítési tippek és technikák

Ez a rövid oktatóanyag kiemeli a LuckyTemplates mobil jelentési funkcióját. Megmutatom, hogyan készíthet hatékony jelentéseket mobileszközökön.

Professzionális szolgáltatáselemzési jelentések LuckyTemplatesben

Professzionális szolgáltatáselemzési jelentések LuckyTemplatesben

Ebben a LuckyTemplates bemutatóban olyan jelentéseket tekintünk át, amelyek professzionális szolgáltatáselemzést mutatnak be egy olyan cégtől, amely több szerződéssel és ügyfél-elkötelezettséggel rendelkezik.