DAX Studio EVALUATE Nøkkelord: Grunnleggende eksempler
Lær å bruke DAX Studio EVALUATE nøkkelordet med grunnleggende eksempler og få en bedre forståelse av hvordan dette kan hjelpe deg med databehandling.
Å lage visualiseringer i R ved hjelp av ggplot2 kan være en kraftig måte å utforske og forstå dataene dine på. En vanlig type visualisering er det bivariate plottet, som lar deg undersøke forholdet mellom to variabler.
I denne opplæringen lærer du hvordan du produserer bivariate visualiseringer i R ved hjelp av ggplot2. Denne bloggen vil spesifikt fokusere på det som ville være vanskelig å utføre i LuckyTemplates, men enkelt å gjøre i R.
Innholdsfortegnelse
Oversikt
Tre hovedemner vil bli diskutert i denne opplæringen. Du vil lære hvordan du visualiserer fordelingen av en variabel etter gruppe, og hvordan du visualiserer korrelasjoner og parvise sammenhenger.
Et parvis forhold refererer til forholdet mellom hvert par av variabler i et gitt datasett.
For denne opplæringen må du laste ned ggplot2 -pakken. Når du er ferdig, åpner du et tomt skript og tar med to biblioteker: tidyverse og GGally .
GGally er en utvidelse til ggplot2. Den er bygget for å redusere kompleksiteten ved å kombinere geometriske objekter med transformerte data.
De forskjellige bivariate visualiseringene i R
En bivariat visualisering viser forholdet mellom to variabler.
La oss som et eksempel lage en visualisering som viser forholdet mellom byen og motorveien. Du må bruke funksjonen ggplot ( ) og deretter tilordne de riktige dataene.
Funksjonen geom_point ( ) brukes deretter til å generere .
Visualiseringer i R som viser korrelasjon
Funksjonen ggcorr () brukes til å visualisere korrelasjonen mellom variabler. Dette vil generere et varmekart med de laveste til høyeste korrelasjonsverdiene vist. Du kan forbedre visualiseringen ytterligere ved å legge til et argument som viser etikettene.
Visualiseringer i R som viser et parvis forhold
For det parvise plottet må du bruke funksjonen ggpairs ( ) .
Siden datarammen i dette eksemplet inneholder et stort datasett, må det først filtreres for kun å vise numeriske verdier, ellers vil resultatene vise en feil.
For å filtrere data, bruk røroperatøren og funksjonen select_if ( ) .
I plott- fanen kan du se den parvise visualiseringen generert av koden. Du kan også se grafen og korrelasjonsverdien mellom hver variabel.
En annen ting du kan gjøre med parvise plott er å legge til ekstra elementer for å forsterke visualiseringen. Du kan legge til en annen variabel og endre fargen på dataene.
I dette tilfellet legges stasjonskolonnen til koden, og den estetiske kartleggingsfunksjonen brukes til å endre fargen.
Når du kjører koden, vil du se at plottet viser spredningsplott og korrelasjonsverdiene etter stasjon. Diagonalen viser også i henhold til hver stasjon.
Konklusjon
Hvis du vil lage robuste og statistisk støttede visualiseringer som histogrammer, spredningsplott og boksplott, anbefales det å bruke ggplot2 med GGally.
Programmeringsspråket R sammen med ulike visualiseringspakker som ggplot2 lar brukere bygge visualiseringer som viser forholdet og korrelasjonen mellom variabler.
GGally utvider ggplot2 ved å utvide flere funksjoner som reduserer kompleksiteten. Hvis du prøver å lage bivariate og multivariate visualiseringer i LuckyTemplates, vil de vise seg å være en utfordring. Innenfor programmeringsspråket R trenger du imidlertid bare å skrive en enkelt linje med kode for å komme frem til det statistiske plottet du trenger.
Beste ønsker,
George Mount
Lær å bruke DAX Studio EVALUATE nøkkelordet med grunnleggende eksempler og få en bedre forståelse av hvordan dette kan hjelpe deg med databehandling.
Finn ut hvorfor det er viktig å ha en dedikert datotabell i LuckyTemplates, og lær den raskeste og mest effektive måten å gjøre det på.
Denne korte opplæringen fremhever LuckyTemplates mobilrapporteringsfunksjon. Jeg skal vise deg hvordan du kan utvikle rapporter effektivt for mobil.
I denne LuckyTemplates-utstillingen vil vi gå gjennom rapporter som viser profesjonell tjenesteanalyse fra et firma som har flere kontrakter og kundeengasjementer.
Gå gjennom de viktigste oppdateringene for Power Apps og Power Automate og deres fordeler og implikasjoner for Microsoft Power Platform.
Oppdag noen vanlige SQL-funksjoner som vi kan bruke som streng, dato og noen avanserte funksjoner for å behandle eller manipulere data.
I denne opplæringen lærer du hvordan du lager din perfekte LuckyTemplates-mal som er konfigurert til dine behov og preferanser.
I denne bloggen vil vi demonstrere hvordan du legger feltparametere sammen med små multipler for å skape utrolig nyttig innsikt og grafikk.
I denne bloggen vil du lære hvordan du bruker LuckyTemplates rangering og tilpassede grupperingsfunksjoner for å segmentere et eksempeldata og rangere det i henhold til kriterier.
I denne opplæringen skal jeg dekke en spesifikk teknikk rundt hvordan du viser kumulativ total kun opp til en bestemt dato i grafikken i LuckyTemplates.