Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

V tomto tutoriálu se hluboce ponořím do časové kohortové analýzy v LuckyTemplates.

Toto je krátká přestávka z nedávné akce pro členy LuckyTemplates. Celé video tohoto tutoriálu si můžete prohlédnout ve spodní části tohoto blogu.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Chci vám ukázat, jak jsem to nastavil. Toto je nejobtížnější úkol, když začínáte spouštět pokročilejší výpočty.

Chcete vědět, jak správně nastavit své datové modely, abyste se vyhnuli zmatkům a ujistěte se, že model LuckyTemplates funguje.

Obsah

Rychlý přehled o kohortové analýze

Než budu diskutovat o této technice, chci vám nejprve ukázat poznatky, které z ní můžete získat, spolu s rychlým přehledem časové kohortové analýzy.

Kohorty představují skvělý způsob, jak volat segmenty nebo seskupení vašich dimenzí nebo proměnných v datech.

Chcete se například podívat na skupiny svých zákazníků.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Chcete vytvořit kohorty podle toho, kdy se vaši zákazníci poprvé připojili nebo začali používat váš software nebo aplikaci.

Pro tento případ jsem vytvořil kohorty jednotlivých měsíců. Pokud tedy vaši zákazníci začali v červnu 2017, je to jejich konkrétní kohorta.

Nejde o seskupení podle částek nebo počtu transakcí, které s vámi provedli. Vaše seskupování je založeno na čase.

Pro tento příklad je to, když se připojili.

Nyní vám ukážu, jak vytvořit tyto kohorty a poté je zapracovat do vašeho modelu.

Vytváření kohort v LuckyTemplates

Pojďme se podívat na model.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Toto je docela obecný model. Takto chcete, aby vaše modely vypadaly.

Můžete vidět, že mám další vrstvu mých vyhledávacích tabulek.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Ale než vám ukážu jeho účel, nejprve zapracuji na vytvoření těchto kohort uvnitř vyhledávací tabulky.

Vyhledávací tabulka je místo, kde chcete seskupit určitou dimenzi. V tomto případě jsou to zákazníci.

Podívejme se tedy na moji tabulku Zákazníci.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Moje tabulka Zákazníci původně obsahovala pouze index zákazníků a jména zákazníků.

Pokud však chcete vytvořit kohorty uvnitř vyhledávacích tabulek, musíte je umístit tam, kde chcete, aby k segmentaci došlo.

Nyní chci zjistit datum připojení zákazníka. V mých demo datech je datum připojení, kdy se zákazník poprvé přihlásil.

První přihlášení může být, když se zákazník zaregistroval pomocí e-mailu nebo když poprvé použil zkušební verzi aplikace.

Musíte zjistit, kdy bylo připojení poprvé zahájeno zákazníkem.

Tyto informace jsem získal pomocí tohoto vzorce:

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Používá seDatum přihlášení . Pak jsem to zabalil dofunkce, abych se ujistil, že dostanu správný kontext filtru. To mi dává první rande.

Teď potřebuji odpracovat měsíc. Chci vytvořit kohorty na základě měsíce, kdy se zákazník připojil.

Tato technika je velmi flexibilní, protože můžete vytvářet různé kohorty.

Ale znovu, pro tento příklad, budu používat měsíční kohortu, která ukazuje měsíc a rok.

Toto je vzorec, který jsem použil pro kohortu pro připojení k měsíci :

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Chytil jsem sloupec Měsíc a rok z tabulky Datum pomocí této logiky:

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Propracoval jsem setabulky Datum a datum se rovná datu připojení zákazníka. Poté, co se rovná hodnotě TRUE , vrátí sloupec Měsíc a rok stejné tabulky. 

Díky tomu mám nyní svou kohortu pro měsíc připojení .

Nastavení tabulky měsíců kohorty

Nyní vám chci ukázat, proč jsem založil astůl.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Vraťme se k tabulce Zákazník.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Pokud to necháte s touto informací a logikou, možná nedostanete každou iteraci měsíce a roku.

Důvodem je, že zákazník se možná nepřipojil v žádném měsíci a roce. Chcete-li tedy získat dobrou vizualizaci, musíte se ujistit, že každý měsíc a rok je uveden v určité tabulce.

Může to být také proto, že informace, které potřebujete, nemusí být v dynamickém výpočtu všech zákazníků.

Pamatujte, že neustále přicházejí noví zákazníci. Tyto informace by se tedy teoreticky měly vždy aktualizovat.

To je důvod, proč jsem vytvořil další tabulku pomocí vzorce Měsíce kohorty :

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Popadl jsem Index asloupce z tabulky Data. Tyto dva sloupce se staly měsíčním rokem kohorty .

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Toto je tabulka data:

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Můžete vidět, že má mnoho sloupců obsahujících mnoho informací. Ale pro tento příklad jsem potřeboval pouze sloupce Index a Měsíc a rok. Shrnul jsem tedy tabulku Data pomocí Cohort Months .

Nyní mám každou iteraci, která se také stala jedinečnými hodnotami.

Pokud by byly tyto informace získány z tabulky Dates, bylo by na ně hodně odkazováno. Ale protože je to nyní sloupec obsahující jedinečné hodnoty, stala se jednoduchou vyhledávací tabulkou.

Můžete vytvořit vztah jeden k mnoha zdo tabulky Zákazník .

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Tento vztah se bude filtrovat až do tabulky Data webových stránek . Logika CALCULATE bude v této tabulce kvůli jejímu vztahu s tabulkou Customer.

Jakmile toto vše nastavíte, máte nyní dimenzi, kterou můžete umístit do matice. Tato matice vám dá každý měsíc.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Statistiky kohortové analýzy

Další zajímavou věcí na Cohort Analysis v LuckyTemplates je, že můžete analyzovat trendy v rámci kohort.

Pro tento příklad jsem chtěl vypracovat svůj Customer Churning.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Vidíte, že mám dynamickou vizualizaci. Mám 641 zákazníků, kteří se připojili ke kohortě z června 2017. Během prvního období však odešlo 12 zákazníků.

Musíte vygenerovat obecnou tabulku, která zobrazuje období, která jste vymysleli.

Pro tento případ jsem ve svém modelu vytvořil tabulku nazvanou Období kohorty.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Vytvořil jsem v něm také opěrný stůl.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Můžete vidět, jak jsem vytvořil minimální a maximální dny pro každé jednotlivé období. Toto určuje časové okno, které chcete analyzovat pro každou jednotlivou kohortu.

Když se vrátíme k příkladu, můžete vidět, že v období 2 bylo 14 zákazníků, kteří v období 30 a 60 dnů odešli.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

A jak jdete tabulkou dolů, můžete vidět, jak se tato hodnota mění pro různé kohorty.

V jiné tabulce ukazuje hodnoty v procentech.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Procenta jsou lepší ve srovnání s čísly, protože z nich můžete získat cenné poznatky. Můžete identifikovat trend odchodů zákazníků v určitém období.

Můžete identifikovat problémy, které způsobily tento trend. Může to být proto, že jste přestali s marketingem a reklamou, nebo proto, že od svých klientů nedostáváte tolik prodejů.

Další použité vzorce pro kohortovou analýzu

Toto jsou další vzorce, které jsem použil pro tuto techniku ​​časové kohortové analýzy v LuckyTemplates.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Tento dynamický vzorec mi umožnil získat poznatky z dat.

Jakmile pochopíte techniky dynamického seskupování pomocí jazyka DAX, budete moci z přehledu vytěžit více.

Další příklady kohortové analýzy

Abych ukázal možnosti této techniky, chci přidat další příklad.

Řekněme, že se chci jednotlivě podívat na zákazníky v této konkrétní kohortě, která stloukala.

Časově založená kohortová analýza – nastavení vašich datových modelů v LuckyTemplates

Mohu si vybrat hodnotu ve své tabulce a ta automaticky zobrazí jednotlivé úrovně zákazníků v jiné tabulce podle toho, jak jsem ji nastavil.




Závěr

Tuto strategii můžete použít pro jakoukoli kohortu, kterou se snažíte vymyslet. Mohou to být kohorty týkající se produktů, regionů nebo zákazníků.

Nejrelevantnější je však příklad v tomto tutoriálu. Kohortová analýza byla popularizována aplikacemi SAS. Měli byste tedy své zákazníky seskupovat podle toho, kdy stloukají.

Pomocí této techniky můžete vytvořit neuvěřitelnou analýzu v LuckyTemplates.

Doufám, že vám tento tutoriál poskytl dobrou představu o tom, co je kohortová analýza a jak ji implementovat.

Vše nejlepší,


Vytvoření tabulky data v LuckyTemplates

Vytvoření tabulky data v LuckyTemplates

Zjistěte, proč je důležité mít vyhrazenou tabulku s daty v LuckyTemplates, a naučte se nejrychlejší a nejefektivnější způsob, jak toho dosáhnout.

LuckyTemplates Mobile Reporting Tipy a techniky

LuckyTemplates Mobile Reporting Tipy a techniky

Tento stručný návod zdůrazňuje funkci mobilního hlášení LuckyTemplates. Ukážu vám, jak můžete efektivně vytvářet přehledy pro mobily.

Profesionální servisní analytické zprávy v LuckyTemplates

Profesionální servisní analytické zprávy v LuckyTemplates

V této ukázce LuckyTemplates si projdeme sestavy ukazující profesionální analýzy služeb od firmy, která má více smluv a zákaznických vztahů.

Aktualizácie Microsoft Power Platform | Microsoft Ignite 2021

Aktualizácie Microsoft Power Platform | Microsoft Ignite 2021

Pozrite si kľúčové aktualizácie pre Power Apps a Power Automate a ich výhody a dôsledky pre platformu Microsoft Power Platform.

Bežné funkcie SQL: Prehľad

Bežné funkcie SQL: Prehľad

Objavte niektoré bežné funkcie SQL, ktoré môžeme použiť, ako napríklad reťazec, dátum a niektoré pokročilé funkcie na spracovanie alebo manipuláciu s údajmi.

Vytvoření šablony LuckyTemplates: Průvodce a tipy

Vytvoření šablony LuckyTemplates: Průvodce a tipy

V tomto tutoriálu se naučíte, jak vytvořit dokonalou šablonu LuckyTemplates, která je nakonfigurována podle vašich potřeb a preferencí.

Parametry pole a malé násobky v LuckyTemplates

Parametry pole a malé násobky v LuckyTemplates

V tomto blogu si ukážeme, jak vrstvit parametry pole s malými násobky, abychom vytvořili neuvěřitelně užitečné přehledy a vizuály.

LuckyTemplates Rank a vlastní seskupení

LuckyTemplates Rank a vlastní seskupení

V tomto blogu se dozvíte, jak používat funkce hodnocení LuckyTemplates a vlastní seskupování k segmentaci ukázkových dat a jejich seřazení podle kritérií.

Zobrazení kumulativního součtu pouze do určitého data v LuckyTemplates

Zobrazení kumulativního součtu pouze do určitého data v LuckyTemplates

V tomto tutoriálu se budu zabývat konkrétní technikou, jak zobrazit kumulativní součet pouze do určitého data ve vašich vizuálech v LuckyTemplates.

Bullet Charts: Pokročilé vlastní vizuální prvky pro LuckyTemplates

Bullet Charts: Pokročilé vlastní vizuální prvky pro LuckyTemplates

Naučte se vytvářet a přizpůsobovat Bullet grafy v LuckyTemplates, které se používají hlavně pro měření výkonu oproti cílovým nebo předchozím rokům.